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The pair trajectories of neutrally buoyant rigid spheres immersed in finite-inertia
simple-shear flow are described. The trajectories are obtained using the lattice-
Boltzmann method to solve the fluid motion, with Newtonian dynamics describing
the sphere motions. The inertia is characterized by the shear-flow Reynolds number
Re = ργ̇ a2/µ, where µ and ρ are the viscosity and density of the fluid respectively, γ̇

is the shear rate and a is the radius of the larger of the pair of spheres in the case of
unequal sizes; the majority of results presented are for pairs of equal radii. Reynolds
numbers of 0 � Re � 1 are considered with a focus on inertia at Re = O(0.1). At finite
inertia, the topology of the pair trajectories is altered from that predicted at Re = 0,
as closed trajectories found in Stokes flow vanish and two new forms of trajectories
are observed. These include spiralling and reversing trajectories in addition to largely
undisturbed open trajectories. For Re = O(0.1), the limits of the various regions in
pair space yielding open, reversing and spiralling trajectories are roughly defined.

1. Introduction
Suspension mechanics is based in large part upon understanding the hydrodynamic

interactions between particles suspended in viscous fluid. For simplicity the particles
considered are usually spherical. Hence, the relative motion of spheres is central to
the study of suspension mechanics. Batchelor & Green (1972) studied this problem
for a pair of neutrally buoyant spheres moving freely, i.e. experiencing zero force
and zero torque, in a linear Stokes flow. This work followed a body of studies which
considered the specific case of hydrodynamic interaction of two spheres immersed
in an ambient shear field (see for example Wakiya, Darabaner & Mason 1967; Lin,
Lee & Sather 1970a; Brenner & O’Neill 1972). The results of this work, directly and
through formal extension to a system of hydrodynamic functions computed to high
accuracy (Jeffrey & Onishi 1984; Kim & Mifflin 1985; Jeffrey 1992), provide the basis
for not only analytical studies (Batchelor 1977; Brady & Morris 1997; Zarraga &
Leighton 2001), but also for simulation tools such as Stokesian Dynamics (Brady &
Bossis 1988) and related approaches (Ladd 1988) which address many particles at a
wide range of solid fraction. Darabaner & Mason (1967) experimentally addressed the
hydrodynamic interaction of two spheres of equal as well as unequal size suspended in
a circular Couette flow at the low-particle Reynolds number of O(10−6). Darabaner &
Mason showed that, depending on the separation between the two spheres, they will
either orbit around each other (permanent collision) or separate, a result in agreement
with the analysis of Batchelor & Green (1972).
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Viscous suspensions have thus been well studied and there is now a body of
understanding of their behaviour, including the transport properties of rheology and
self-diffusion, as well as such bulk flow phenomena as shear-induced migration. As
a model two-phase material, the Stokes-flow suspension has played a valuable role
in the development of the study of mixture flow. However, progress in understanding
mixture flow at finite inertia has been slow (Koch & Hill 2001). New computational
techniques have recently made examination of motions of interacting particles at
finite Reynolds number feasible. Because of the computational costs involved, the
conventional computational fluid dynamics (CFD) methods such as finite element
applied to the particle-laden flow (Hu, Joseph & Crochet 1992; Hu 1996; Hu,
Patankar & Zhu 2001) have to date largely examined two-dimensional particle-
laden flows with finite inertia (Feng, Hu & Joseph 1994; Huang & Joseph 2000),
with sedimentation the most commonly considered flow. Three-dimensional problems
studied include the settling ellipsoid in a tube with boundary interactions accounted
for (Swaminathan, Mukundakrishnan & Hu 2006). There is associated with the
finite-element method (FEM) the requirement of remeshing the fluid as the structure
evolves, and the extremely small surface separations to which particles are driven
in shear flow magnify this problem. We choose to work with the lattice-Boltzmann
method (LBM) as developed for particulate flows (Ladd 1994a, b; Aidun, Lu &
Ding 1998; Ladd & Verberg 2001). In this method, the particles move on a fixed
mesh, which simplifies the problem relative to FEM, while allowing simulation of
finite inertia fluid motion and thus providing capability not available in Stokesian
Dynamics. The spatial locality of the lattice-Boltzmann equation, and the fixed grid
provide ease of parallelization. A potential disadvantage of the LBM is that because
of its formulation it allows finite compressibility of the fluid, as discussed in § 2.3,
and care must be taken when simulating incompressible motions to ensure that the
influence of compressibility is small. We present quantitatively the effect of finite
compressibility on our results in § 4.1.

The problem addressed here is that of determining the relative motion of pairs
of spheres in finite-Reynolds-number shear flow. Only the case of neutrally buoyant
particles will be considered. The Reynolds number characterizing the fluid inertia
in shear is given by ργ̇ a2/µ, where a is the particle size (taken as the radius for
a sphere), µ and ρ are the viscosity and density of the fluid, respectively, and γ̇

is the shear rate. The particles, being of equal density to the fluid, have similar
inertia to the fluid. However, we emphasize that Re is related to fluid inertia to
distinguish it from the Stokes number, which may be written St = (ρp/ρ)Re, using ρp

to denote the density of the particle; St characterizes particle inertia. Only recently
has there appeared work addressing the influence of inertia on the relative motion
of particle pairs in shear flow, and all of the work of which we are aware has
considered cases different from the present study. This recent work is numerical
and we know of no experiments addressing the issue, although the influence of finite-
inertial hydrodynamic interactions has been suggested to play a role in experimentally
observed formation of chain-like structures in dilute pressure-driven suspension flow in
a pipe by Matas et al. (2004), a phenomenon replicated in square duct flow simulations
(Chun & Ladd 2006). The numerical work noted includes the case† of St > 0 and

† Subramanian & Brady (2006) used St∗ = 2St/9 and the same Re as presented in this work,
but we prefer the definition of Stokes number given here as it indicates excess particle inertia if St
exceeds Re, whereas the equivalent physically significant condition is found when St∗ > 2Re/9.
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Re ≡ 0 studied by Subramanian & Brady (2006) while St > Re > 0 was considered
by Kromkamp et al. (2005). Subramanian & Brady used well-known hydrodynamic
interaction functions to determine the hydrodynamic force and torque on particles
with finite values of St , corresponding perhaps to solid particles in gas, and observed a
rich set of new features including limit cycles in the pair trajectory space relative to the
zero-Re–zero-St condition. The Kromkamp et al. study considered two-dimensional
circular cylinders at 0 <Re � 0.51, with ρp/ρ = 3 and 10 yielding St = 3Re or 10Re.
The combined influence of fluid inertia and excess particle inertia (i.e. St > Re) results
in behaviour which differs from the neutrally buoyant case examined in this study.
Because the conditions of both the Subramanian & Brady and the Kromkamp
et al. studies involved heavy particles, gravity was neglected in their work. Here, we
study the case of neutrally buoyant particles because it seems the first natural case
to examine in order to isolate the role of inertia in shear-induced hydrodynamic
interactions, and furthermore because the conditions are experimentally realizable in
normal gravity.

The fluid flow around a single sphere in simple-shear flow at finite inertia has been
studied analytically (Lin, Peery & Schowalter 1970b), experimentally (Poe & Acrivos
1975) and numerically (Nirschl, Dwyer & Denk 1995 by finite volume; Mikulencak
& Morris 2004 by finite element). An important aspect of the flow characteristics
of this simplest system was missed in these prior studies, as shown by the recent
analysis of Subramanian & Koch (2006a, b). These authors showed that the streamline
topology at finite Re changes qualitatively from that at Re = 0. In particular, the fluid
elements close to the freely rotating sphere spiral outward rather than forming a
closed streamline region. This leads to the prediction that the suspended particles
significantly enhance heat and mass transfer, by introducing a convective mechanism
rather than diffusion through the closed-streamline zone. We apply the LBM to gain
further insight into the finite-Re streamline pattern around a single sphere in support
of the primary goal of understanding pair-sphere trajectories in shearing flows. Pair
trajectories at small Re are found to be similar in their structure, even for equal-sized
spheres, to the streamlines around the single sphere.

In § 2, we define the problem and present a brief outline of the methods used in
our study. We then present our simulation results, examining the streamlines around
a single sphere (§ 3) and pair trajectories of spheres (§ 4) in simple-shear flow at finite
inertia.

2. Problem statement and solution method
2.1. Governing equations

Our interest is in the motion of neutrally buoyant solid spherical particles suspended
in a Newtonian fluid subjected to simple shear flow with finite fluid inertia. The
governing equations in non-dimensional form for the fluid phase are

∇ · u = 0, (2.1a)

Re

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u, (2.1b)

where length has been made dimensionless with the radius of the sphere a, time by the
inverse of the shear rate γ̇ −1, fluid velocity by γ̇ a, and the pressure by µγ̇ . The shear-
flow Reynolds number is defined as Re = ργ̇ a2/µ, where µ and ρ are, respectively,
the viscosity and density of the fluid. Particle translations (U i) and rotations (Ω i) are
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governed by Newtonian dynamics,

mi

∂U i

∂t
= Fi , (2.2a)

Ii

∂Ω i

∂t
= T i , (2.2b)

where the net force Fi and net torque T i act on the particle i, which has mass and
moment of inertia mi and Ii , respectively. We shall focus on the relative motion of
a pair of neutrally buoyant spherical particles, with certain results presented for a
single sphere to facilitate understanding of the pair problem.

2.2. Limiting behaviour: Stokes solutions

Before proceeding to the solution method, we recall the well-known limiting behaviour
obtained analytically at Re = 0 for the isolated sphere and a pair of equally sized
spheres. At Re = 0, the flow field around a sphere suspended in simple-shear flow may
be obtained analytically via superposition of vector harmonic functions (Leal 1992).
The velocity field in the fluid around the sphere is given by Mikulencak & Morris
(2004) as

ux = 1
2
y(1 − r−5) + 1

2
y(1 − r−3) − 5

2
x2y(r−5 − r−7) − Ωy

r3
, (2.3a)

uy = 1
2
x(1 − r−5) − 1

2
x(1 − r−3) − 5

2
y2x(r−5 − r−7) +

Ωx

r3
, (2.3b)

uz = − 5
2
xyz(r−5 − r−7). (2.3c)

If the sphere rotates freely (zero torque), it has steady angular velocity, made
dimensionless with γ̇ , of Ω = 1/2, matching the vorticity of the undisturbed flow.
The inertialess streamline configuration around the freely rotating sphere is shown
in figure 1(a). The flow is characterized by a region of closed streamlines which
extends infinitely in both the flow and vorticity directions. Outside this closed
streamline region, open streamlines begin from upstream infinity, and proceed past the
particle to downstream infinity, e.g. beginning from (x → −∞, y > 0) and proceeding
to (x → ∞, y > 0). The streamline form is mirrored through the plane y = 0. All
streamlines, whether open or closed, also have fore–aft symmetry about the plane
x = 0, owing to the linearity and reversibility of the Stokes equations.

The relative trajectories of a pair of particles in Stokes flow have a number of
similarities to the streamlines around an isolated sphere. Two spherical particles
suspended freely in simple-shear flow at Re = 0 follow one of two kinds of pair
trajectories. These are illustrated for equally sized spheres in figure 1(b). One type are
the ‘open’ trajectories in which one particle starts far upstream with an offset in the
gradient direction, approaches and passes over the other particle and returns to the
same offset far downstream. The second type are ‘closed’ trajectories in which the
particles are captured in permanent orbits around each other. The region occupied
by the closed trajectories has infinite volume (Batchelor & Green 1972). Nonetheless,
the set of closed trajectories is compressed to a very narrow band where the pair
separation is only slightly greater than two radii on closest approach, as seen in
figure 1(b). A closed surface, symmetric about the planes x = 0 and y = 0, separates
these two regions in trajectory space; the same symmetries about these planes hold
for all pair trajectories in Stokes flow. The open and closed trajectories are found for
arbitrary size ratio of the two spheres, i.e. a and b �= a, and in the limit of b/a � 1
the smaller sphere should asymptotically follow the fluid motion around an isolated
sphere. There is thus a continuous variation from the streamline about a single sphere
to the trajectory of a pair of equal sized spheres.
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Figure 1. (a) Streamline configuration around a freely rotating sphere in simple-shear flow at
Re = 0. (b) Pair trajectories of two force-free spheres in simple-shear flow at Re = 0 obtained
from the analytical solution of Batchelor & Green (1972): the curves describe the motion of a
second sphere relative to the origin instantaneously fixed at the centre of the first (as indicated
by the grey circle at the origin). For both (a) and (b) shear flow of form ux = γ̇ y is as indicated
in (a).

2.3. Lattice-Boltzmann method

We use the approach of Ladd (Ladd 1994a, b; Aidun et al. 1998; Ladd & Verberg
2001) for the LBM to model the fluid motion in this work. The LBM when applied to
a suspension combines Newtonian mechanics for the solid particles with a discretized
Boltzmann model for the fluid. The fluid phase is discretized in space and time and
is taken to be made of fictitious particles (or ‘LB particles’) which are constrained to
move on a regular lattice. The state of the system is characterized by the one-particle
velocity distribution function ni(r, t), which describes the mass density of the LB
particles moving with discrete velocity ci at a lattice node r at time t . We have used
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the three-dimensional, 19-velocity, or D3Q19, velocity model in which a particle can
either rest or move to the nearest (directly along a lattice direction, e.g. [100]) or
diagonally next nearest (e.g. [110]) neighbouring node of a cubic lattice (Ladd &
Verberg 2001). The mass density ρ, momentum density j = ρu and the momentum
flux Π are defined by moments of the velocity distribution function

ρ =
∑

i

ni, j =
∑

i

ni ci , Π =
∑

i

ni cici . (2.4)

The lattice-Boltzmann equation for the evolution of ni(r, t) is written as (Frisch
et al. 1987; Higuera, Succi & Benzi 1989; Ladd 1994a)

ni(r + ci�t, t + �t) = ni(r, t) +
∑

j

Ω ij n
neq
j , (2.5)

where �t is the time step and the collision operator Ω ij describes the change in ni due
to collisions. The non-equilibrium distribution function is defined as n

neq
i = ni − n

eq
i .

The general form of equilibrium distribution is chosen to recover the Navier–Stokes
equations for low Mach number flows (Ma = u/cs � 1, where cs =

√
1/3 is the speed

of sound in lattice units) and can be written to O(u2) as (Ladd & Verberg 2001)

n
eq
i = aci

[
ρ +

j · ci

c2
s

+
ρuu :

(
ci ci − c2

s I
)

2c4
s

]
, (2.6)

where I is the identity tensor and aci are the coefficients of three speeds 0, 1 and
√

2
associated, respectively, with LB particles remaining at the same node, moving to a
nearest neighbour, or moving to a next-nearest neighbour. At equilibrium the density
of lattice-Boltzman particles moving in the [100] direction is twice that for the [110]
direction and hence the coefficients, obtained from conservation constraints, are given

by a0 = 1
3
, a1 = 1

18
, and a

√
2 = 1

36
. The post-collision distribution n∗

i (r, t) is written as a
series of moments,

n∗
i = aci

[
ρ +

j · ci

c2
s

+
(ρuu + Πneq,∗) :

(
cici − c2

s I
)

2c4
s

]
. (2.7)

In the collision process mass and momentum remain conserved but the non-
equilibrium momentum flux changes according to

Πneq,∗ = (1 + λ)Π̄
neq

+ 1
3
(1 + λv)(Πneq: I)I, (2.8)

where λ and λv are eigenvalues of the collision operator and are related to the shear
and bulk viscosities. After the collision, the population densities are streamed to the
neighbouring node along velocity link ci .

In the LBM, solid particles are discretized in space and are defined by a surface
that cuts some links between lattice nodes. Following Aidun et al. (1998), the fluid
is removed from the interior of the particle. To implement solid–fluid boundary
conditions the ‘link–bounce-back’ rule, in which the boundary nodes are located
midway between the solid and the fluid nodes, is applied. The population densities of
the fluid nodes just outside the solid surface are modified such that the fluid velocity
is matched to the local solid velocity. We consider a set of fluid nodes at position
defined by r and for each node all the velocities ci such that r + ci�t lies inside the
particle surface. If rb = r + 1

2
ci�t is a point inside the particle moving with translation

U and angular speed Ω , then its velocity is

ub = U + Ω × (rb − R), (2.9)
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where R is the centre of mass of the particle. The population density is updated by

n−i(r, t + �t) = n∗
i (r, t) − 2aci ρ0ub · ci

c2
s

, (2.10)

where −i denotes the velocity c−i = −ci . In this update momentum is exchanged
between the solid and the fluid particle, but the combined momentum is conserved.
The force exerted at the boundary node is given by

f b

(
rb, t + 1

2
�t

)
=

�x3

�t

[
2n∗

i − 2aci ρ0ub · ci

c2
s

]
ci , (2.11)

where �x is the lattice spacing. By summing over all the boundary nodes rb, we
obtain the total force and torque acting on the particle as

F =
∑

rb

f b, and T =
∑

rb

f b × rb. (2.12)

The particle positions and velocities are then updated.
Since a suspended particle is represented discretely, it samples different numbers of

nodes as it moves, and hence there is an effective hydrodynamic radius rh which is
greater than the prescribed radius a. This rh depends only on a and fluid viscosity
(Ladd & Verberg 2001). As the particle becomes large, the difference between rh and
a grows small; rh is calibrated by calculating the drag coefficient of a sphere in the
Stokes flow regime (Ladd 1994b).

An important part of the hydrodynamic interaction of two spheres involves
near-field lubrication stresses, particularly due to squeeze flow associated with
motion of a pair approaching contact along the line of centres. Though LBM can
capture hydrodynamics down to one lattice spacing, the grid resolution may become
insufficient to resolve the flow in the gap. To overcome this problem, Nguyen &
Ladd (2002) proposed the following normal force be added between the two spheres:

Flub = −6πµ(ab)2

(a + b)2
r̂ r̂ · U21

(
1

h
− 1

hc

)
, (2.13)

where a and b are the radii of the spheres, r = x2 − x1 for particles centred at x1

and x2 with r̂ = r/|r|, and U21 = U2 − U1 is the relative velocity of the pair. The
gap h = |r| − 2a (or h = |r| − a − b for unequal sizes) is between the points of closest
approach of the surfaces with hc a cutoff for the added lubrication force: for gaps
larger than hc, Flub = 0, and this cutoff hc is set empirically as 2/3 of the lattice spacing.

3. Single particle at finite Re

It has recently been shown that for a single sphere rotating freely in simple-shear
flow, the closed streamline structure present at Re = 0 is destroyed by weak inertia
(Subramanian & Koch 2006a , b). The fluid elements close to the sphere spiral around
it before departing the vicinity of the sphere to proceed ‘downstream.’ As shown below,
the exit from the vicinity of the particle can be in either of the two possible directions
associated with the shear flow ux = y depending upon which streamline is considered,
i.e. there is an interlacing of streamlines which depart in the two directions. The rate of
spiralling depends upon the value of Re. Accompanying the spiralling motion, mass
conservation demands a net flux of the fluid along the vorticity direction toward the
sphere, and these streamlines also spiral outward. Fluid outside the envelope of the
spiralling region may either pass the body on an open streamline, or reverse its path;
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Figure 2. Computed streamline configuration in the plane of shear around a freely rotating
sphere in simple-shear flow at Re = 0.1.

the reversal zone, discussed in detail by Mikulencak & Morris (2004), is associated
with small gradient direction offsets sufficiently far upstream of the body to be outside
the spiralling streamline region. A similar picture prevails as one considers planes
of constant z, i.e. progressing in the vorticity direction, although the cross-section in
the local x–y plane of the spiralling trajectories diminishes in size with increasing z.
Streamlines in the plane of shear (z = 0), with the flow computed by the LBM, around
a freely rotating sphere at Re = 0.1 are shown in figure 2. Note that the streamlines
near the body make circuits and then depart from the particle toward infinity, and
that reversing streamlines are evident at the left and right of the figure.

As Re increases, the reversing region approaches the particle (Mikulencak & Morris
2004) and the spiralling region collapses. This behaviour of the streamline pattern is
quite similar to the case of a cylinder in two-dimensional flow (Robertson & Acrivos
1970; Kossack & Acrivos 1974). However, in the two-dimensional flow, the constraints
of symmetry and incompressibility ensure that the streamlines close to the cylinder are
closed. We plot in figure 3 fluid streamlines starting from the same point, specifically
(x, y, z) = (−1.3, 0, 0), for Re = 0.05, 0.5 and 5. At lower Re, a fluid element makes
more circuits around the sphere before it moves away permanently, and the direction
of departure may be either left or right depending on the precise location of the
initial point and the level of inertia. Figure 4 shows that the out-of-plane reversing
(1) and open (2) fluid paths always tend to have a net displacement away from the
shear plane while a spiralling streamline (3) comes closer to the shear plane before
it departs the vicinity of the particle. Note that when they approach closely to the
sphere, the spiralling paths have a portion on each circuit moving away from the
sphere, but the net motion on a circuit is toward the body until the final circuit. On
this final circuit, the net z-directed motion is slightly away from the body, and this
will be echoed in the particle pair trajectories. The three-dimensional picture of the
various forms of streamlines is illustrated in figure 5 for Re = 0.5, where single open,
reversing, in- and out-of-plane spiralling fluid paths are plotted.
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Figure 3. (a) Streamlines starting from (–1.3,0,0) for Re = 0.05, 0.5 and 5 in simple-shear flow
around a freely rotating sphere. (b) Expanded view of the region (0.5 � x � 2.5, −0.5 � y � 0.5).

4. Pair trajectories at finite Re

Here, the aim is to determine the finite-Re trajectories of two spheres freely
suspended in simple-shear flow. In most of the simulations discussed, two neutrally
buoyant spheres of equal radius a are placed symmetrically in a computation box
of size L × H × W , as illustrated in the sketch of figure 6; in some instances, we
consider unequal spheres of a and b < a. The shear flow is set by moving the top
and bottom walls in opposite directions at equal speed. Periodic boundary conditions
are applied in the flow and vorticity directions; as in the prior discussion, x, y

and z denote the flow, gradient and vorticity directions of the undisturbed flow,
respectively. The spheres, initially separated by some displacement, are first allowed
only to rotate until they achieve a steady flow field and are then released. The Mach
number is defined by Ma = γ̇ H/(2cs), where γ̇ H/2 is the wall velocity. We maintain
Ma < 0.1 in order to minimize compressibility effects. The constraint may be written
Ma = (µRe/ρcsa) × (H/a) < 0.1, which means that one has to decrease the viscosity
of the fluid in order to increase Re for fixed a/H .

The primary interest here is in the role of fluid mechanical inertia upon the pair
relative trajectory, and hence the shear Reynolds number Re is the key parameter
determining the structure of the trajectory space. However, because we compute the
motion in a periodic and wall-bounded domain, the nature of trajectories depends
to some degree upon the domain size. Issues include the fact that walls suppress
the rotation of a single particle in the shear flow by creating stronger flow reversal
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Figure 4. Off-plane fluid streamlines for Re = 0.1 around a freely rotating sphere in
simple-shear flow: (a) xy-projection; (b) xz-projection. (1) Reversing streamline originating
from (−5, 0.1, 1.5). (2) Open streamline originating from (−5, 0.15, 1.5). (3) Spiralling
streamline originating from (−0.01, 0, 3.0). The spherical particle is shown as a shaded ellipse
because of the stretched y or z coordinate.

regions (Ding & Aidun 2000); also, the particles interact with their periodic images,
which gives rise to a dependence of trajectories on the size of the domain in flow and
vorticity directions. Even in the absence of inertia, the presence of nearby walls will
cause flow reversal of streamlines for a single sphere and of the relative trajectory for
a pair; this phenomenon has been examined for pair interactions by Zurita-Gotor,
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Figure 5. Three-dimensional streamline configuration around a freely rotating sphere in
simple-shear flow at Re = 0.5 obtained by the LBM. Single open and reversing streamlines are
shown, with one in-plane and one out-of-plane spiralling streamline also illustrated.
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Figure 6. Sketch defining terms used in describing the pair-sphere motion in simple shear.

B�lawzdziewicz & Wajnryb (2007). Results will be presented below which address the
influence of domain size in our work.

We have chosen a mesh density of 6.2 lattice nodes per radius of the sphere, and
a computational domain of 20a × 20a × 20a. Results have been found qualitatively
independent of increase in the density of the lattice. To sample the trajectory space,
we vary the initial positions of the spheres, with the pair symmetrically placed (except
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in cases of unequal spheres) about the central point in the computational domain.
We will usually describe the pair trajectories in terms of the time variation of the
separation of the centres of the pair of spheres, r(t) = x2(t) − x1(t), with initial
separation denoted by r0 = (r0x, r0y, r0z).

Fluid inertia alters the topology of the trajectories of neutrally buoyant particles
relative to the Stokes flow results outlined in § 2.2. The trajectory space transitions
from having two regions (open and closed) at Re = 0 to three types at any finite Re.
These three trajectory types mirror the form of the streamlines of the steady finite-Re
flow around a sphere and will again be termed open, reversing and spiralling. The
motion is, of course, unsteady. We outline here the general results to be detailed in
the following.

The open trajectories at finite Re are largely similar to those predicted for Stokes
flow, starting from upstream infinity and progressing in the x (streamwise) direction
in the same sense at every point, with some deflection of the trajectory when the pair
is close. The open trajectories form the majority of the pair space, because the other
types require significant particle interaction. Note that this does not imply closely
approaching pairs will not have open trajectories: as seen below, spheres of equal size
may approach surface separations below 1 per cent of a radius on open trajectories.

The reversing trajectories are much like the reversing (termed recirculating by
Subramanian & Koch 2006a, b) streamlines about a single sphere discussed in detail
by Mikulencak & Morris (2004). A pair with an initial offset (r0x < 0, r0y > 0) will
approach and then reverse their relative positions in y and hence reverse their relative
motion in x to recede toward (rx < 0, ry < 0).

The spiralling trajectories are divided into the in-plane and out-of-plane trajectories,
depending upon whether the pair lie at the same or different z coordinates, respectively.
For particles starting with a finite r0z and lying near the vorticity axis (z), the pair
approach one another along a path which spirals outward when projected onto the
x–y plane, eventually leaving the mutual ‘zone of influence’ and moving away in x.
For a pair lying at the same z, i.e. in the plane of shear, there is no z-directed motion
because of the symmetry. There is a small region of pair space adjacent to contact
in which the particles simply spiral around and away from one another, and then
depart the close interaction. We note that the spiralling trajectory motion toward
the shear plane is much like that of the fluid flow around a single sphere, where
it is a requirement of mass conservation as material is being spun outward on and
near the plane of shear and must be replaced by an inflow down the vorticity axis.
The spiralling pair relative motion can thus be seen as an inertial hydrodynamic
interaction driven by the centrifugal ejection of fluid in the equatorial plane region of
the reference sphere.

Before we address the computational results, we present an argument which allows a
fairly ready rationalization of the vanishing of closed trajectories for any Re > 0. This
behaviour may be seen as a direct consequence of the loss of fore–aft symmetry, known
from single-sphere shear-flow studies at finite inertia (Lin et al. 1970b; Mikulencak &
Morris 2004; Subramanian 2006a, b), where the asymmetry is reflected in two
diametrically opposed wakes in the downstream quadrants. As a result, stream-
lines, which would form a closed circuit around a freely rotating sphere at Re = 0
and thus must cross the y = 0 plane at the same distance from the sphere (at say
x̃ and −x̃), will at small Re suffer a slight streamwise displacement at each passing
by the sphere. Because of the antisymmetry of the velocity on reflection through the
origin, namely u(x) = − u(−x), a similar behaviour will occur at the next passage
of the fluid element around the rotating sphere – the result of this is an outward
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Figure 7. In-plane trajectories of a pair of equal-sized spheres of radius 1 in simple-shear
flow at Re = 0.1 starting at the same streamwise but different gradient separations. Open
trajectories are denoted by dashed lines and reversing by solid lines. Note that, in this figure
the frame of reference is fixed at the centre of computation box to give the idea of motion of
the two particles.

spiral. Similarly, at small Re a pair will have a fore–aft asymmetric interaction; even
if the trajectories make circuits, these will cross the y = 0 plane at progressively larger
values until the pair spiral away to infinite separation.

4.1. Finite Re trajectories in the shear plane

We begin by considering particles of equal size confined to the shear plane, z = 0. If
the two particles start with large initial separation in x and y, only open and reversing
trajectories will be observed. Figure 7 illustrates the nature of in-plane trajectories at
Re = 0.1, beginning with small r0y and r0x = −9.7, i.e. a separation of almost ten radii
in the streamwise direction. In this case, we illustrate both particle trajectories, with xi

and yi denoting the coordinates of particle i (i = 1 or 2). The observed bumpiness in
the trajectories is related to the mesh density of the sphere and resulting perturbations
in the flow field due to the uncovering of the solid nodes as the particles move.

For a given Re, there is a critical gradient displacement, rc
0y , that separates the

two types of configurations. In the case of an open trajectory, the particles show
evidence of fluid inertia, as there is a local deflection toward the zero-velocity (y = 0)
plane upon close approach, and a net positive displacement in the gradient direction
(�y > 0) through the complete interaction which depends on r0y: for smaller r0y > rc

0y ,
the particles come closer and experience a greater net displacement �y. It is of interest
to note that Kromkamp et al. (2005), in two-dimensional simulations, found a net
displacement of the opposite sign, i.e. �y < 0, for pairs interacting on open trajectories
for St > Re > 0; Subramanian & Brady (2006) considered Re = 0 and finite St and
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Figure 8. Surface separation ((|r| − 2a)/a) between the spheres for different open trajectories
at Re = 0.1. The trajectory labelled 1 does not involve modelled lubrication (surface separation
> 2/3 lattice spacing) while the others do.

found a negative gradient displacement scaling as St1/2 for small St . These results
both lead to the conclusion that approaching particles at elevated inertia relative to
the surrounding material, i.e. St > Re, reach smaller separations when resisted only by
viscous stresses, and considering the results of the Stokes pair trajectory of figure 1(b),
it is natural that they exit the interaction at a smaller y displacement than they had
upstream of the interaction.

A closer examination of the trajectory asymmetry is made by considering the
separation between sphere surfaces (|r| − 2a)/a. These are plotted against the x

coordinate of particle 2 in a frame fixed on particle 1 in figure 8 for three open
trajectories. The closeness of approach leads to concern that the key feature of
the gradient offset may be due to inaccurate computation of the lubrication force.
However, for trajectory 1 the surface separation between the particles remains greater
than 0.7 lattice units, so that modelled lubrication forces do not become active in
the simulation of the motion. This trajectory is the least asymmetric of the three but
shows a gradient offset nonetheless, and the lack of lubrication indicates that fluid
inertia is responsible for the asymmetry.

Upon increasing the Reynolds number, keeping all other parameters fixed, rc
0y

increases: there is a larger region of reversing pair trajectories as Re increases, and
this is consistent with the region of reversal approaching the particle more closely
with increasing Re (Mikulencak & Morris 2004). To illustrate the implications of
increasing Re for this region of trajectory bifurcation, trajectories for Re = 0.1 and
0.2 initiated at the same three positions are shown in figure 9 for three cases. Hereafter,
results are presented in the relative form, r = x2 − x1; the figure shows the reference
particle 1 as a shaded elliptical region because of the stretching of the y coordinate.
When particle 2 starts at A, r0 = (−9.7, 0.65, 0), the higher Re trajectory brings it
closer to the x-axis before it passes over the reference particle. For the particle
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Figure 9. (a) In-plane trajectories of a pair of equal-sized spheres of unit radius in simple-shear
flow at Re = 0.1 (solid lines) and Re = 0.2 (dotted lines). A trajectory for each of the two
Re commences from A, r0 = (−9.7, 0.65, 0); B, r0 = (−9.7, 0.3, 0); and C, r0 = (−9.7, 0.2, 0).
(b) Log–log plot of the trajectory-bifurcation point rc

0y separating open and reversing

trajectories with Re for x = −9.7.

starting at B, r0 = (−9.7, 0.3, 0), this tendency to move toward the x-axis is carried
to the point of a flow reversal: at Re = 0.1 this initial condition lies on an open
trajectory, while at Re = 0.2 it lies on a reversing trajectory. The particle starting at C,
r0 = (−9.7, 0.2, 0), with Re = 0.1 travels a greater horizontal distance before it reverses
its direction than does the Re = 0.2 particle. It should be noted that the stagnation
point associated with closest approach of a pair exhibiting trajectory reversal is found
closer to contact with increasing Re (Poe & Acrivos 1975; Mikulencak & Morris
2004). The trajectories emanating from point C do not contradict this point, but there
is potential for confusion. The reader should note that the width in y of the reversal
zone at a given rx increases with Re and this brings trajectories closer to contact as
Re increases; comparing the B trajectory at Re = 0.2 with the C trajectory at Re = 0.1
helps in seeing this point. This is further illustrated in figure 9(b), where we plot
the trajectory-bifurcation point rc

0y with Re for x = −9.7. The error bar indicates the
numerical precision in the measurement of rc

0y . The value of rc
0y increases roughly

as Re0.3 for 0.01 <Re < 1, but for Re � 0.01 wall effects start to affect the nature of
trajectories and for Re > 0.5, trajectories are increasingly influenced by the periodic
images of the particles.

As noted, the boundaries may play a role in generating reversing trajectories even
in Stokes flow as shown in Zurita-Gotor et al. (2007), and may also alter the rotation
rate of a single particle at finite Re (Ding & Aidun 2000; Zettner & Yoda 2001;
Mikulencak & Morris 2004). To assess the influence of the walls, we performed
simulations with H = 30 (non-dimensionalized by radius of the sphere a) rather than
20 at Re = 0.1, keeping other parameters constant and found that the trajectories
were indistinguishable. With an increase in size of the computation box in the flow
direction to L = 30, rc

0y increases, but the qualitative picture remains the same. With
an increase in the domain size in the vorticity direction to W = 30, the trajectories are
found to be unchanged.
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Figure 10. (a) The difference velocity in the flow direction �ux(x = 0, y, z = 0) at Ma = 0.0225
and at Ma = 0.045, 0.13 and 0.27 plotted with the y coordinate for a single particle
in simple-shear flow at Re = 0.1. (b) The reversing pair trajectories at Re = 0.5 for
Ma = 0.007, 0.014 and 0.22.

Compressibility is inherent in the LBM as employed here and its influence upon
our results was checked by simulation of a single particle and a pair of particles
in simple-shear flow at various Mach numbers, 0.007 � Ma < 0.3. As a technical
matter, note that to vary Ma while keeping Re and a/H fixed, it is necessary to
change the viscosity of the simulated fluid. The case of a single particle at Re = 0.1
is considered in figure 10(a). The difference velocity in the flow direction is defined
�ux = ux(Ma = 0.0225) − ux(Ma) and values of Ma = 0.045, 0.135, and 0.27 are
considered; the difference velocity along a line passing through the centre of the
particle, �ux(x = 0, y, z = 0) is plotted (for y > 0 only due to symmetry of the flow). It
is seen that �ux grows considerably with Ma in the vicinity of the particle, but tends
rapidly to zero away from the surface. In the case of a pair of particles, reversing pair
trajectories are considered suitable for the comparison at different Ma, for the reason
that they do not involve modelled near-field lubrication forces to complicate the
analysis further. Figure 10(b) shows the reversing trajectories for Ma = 0.007, 0.014
and 0.22 at Re = 0.5. The pair at higher Ma approaches more closely in the flow
direction before reversing its path. To suppress such effects, we keep Ma < 0.1 in our
simulations, but it is important to bear in mind that small but non-negligible effects
of compressibility remain down to Ma = O(0.01).

We consider now the spiralling trajectories. If the two particles begin with a very
small separation in the shear plane, the expectation is that they spiral around each
other before departing the close interaction. However, it is unclear that for equal-
or nearly equal-radius spheres the in-plane spiralling motion is present at Re = 0.1.
The spiralling trajectories in the plane of shear, if present, are compressed to an
extremely small volume of trajectories which begin from pairs essentially in contact.
When the Reynolds number is decreased, the reversal zone does not approach the
contact surface so closely, and the expected spiralling trajectories are more readily
observed. For Re = 0.01, figure 11(a) shows a spiralling trajectory originating from
r0 = (−2.16, 0, 0), a surface separation of 0.16 radii, as it makes a partial circuit and
then departs to infinity. The minimum surface separation between the spheres for
this case is seen in figure 11(b) to be 3 × 10−5. For minimum surface separations of
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Figure 11. (a) The in-plane spiralling trajectory of equal-radius spheres originating from
r0 = (−2.16, 0, 0) for Re = 0.01 in simple-shear flow. (b) Surface separation from this trajectory.
The labels 1 and 2 denote segments progressing in the same sense with respect to the x direction.

O(10−4), the spheres are observed always to separate at this Re. We note that in
Stokes flow, the minimum separation of in-plane closed trajectories is about 5 × 10−5

radii (da Cunha & Hinch 1996). It is also of interest to note that in the experimental
study of Darabaner & Mason (1967), in which the relative trajectories of two spheres
in a circular shear flow under much weaker inertia of Re = O(10−6) were studied, the
need for this very close initial condition for ‘closed’ trajectories was observed. In that
study, if an electric field was used to bring the two spheres to apparent contact, in
subsequent shearing the spheres were found to make permanent orbiting doublets of
a form similar to that predicted by the analysis of Batchelor & Green (1972). Without
the application of an electric field, the spheres did not reach the necessary minimum
separation and hence separated immediately upon shearing.

Figure 12(a) shows a spiralling trajectory for a pair with radius ratio of 2.3 at
Re = 0.01. The corresponding surface separations for various portions of the curve
are labelled. These indicate the portions of the trajectory over which the relative
velocity has the same sign in the x coordinate. As the pair makes a full circuit, the
pair separation increases and this is seen in more detail in figure 12(b).

4.2. Off-plane trajectories

We term the trajectories not residing in the shear plane ‘off-plane.’ At Re = 0, the
xy-projections of the off-plane trajectories have a similar appearance to those in the
shear plane, i.e. the presence of closed and open trajectories with a limiting closed
trajectory separating the two. Over a complete circuit, these have zero displacement,
�z = 0. Any finite Re, however, breaks this symmetry and the trajectories are no
longer closed. Again, there are three types of trajectories, namely reversing, open and
spiralling. In the following discussion, the behaviour of trajectories is described for
r0z > 0 and the arguments can be extended for r0z < 0 from the symmetry across the
shear plane.

4.2.1. Reversing trajectories

For a fixed r0x (r0x = −9.7 was the usual case), various initial vorticity coordinates r0z

were studied. For r0z = 0, the net vorticity displacement �z = 0 as symmetry requires
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Figure 12. (a) The in-plane spiralling trajectory originating from (−1.6, 0, 0) at Re = 0.01 for
a pair of spheres with radius ratio of 2.3 in simple shear flow. (b) Surface separation from this
trajectory. The labels 1, 2, and 3 denote segments progressing in the same sense with respect
to the x direction.

no motion in z. For small finite r0z, the net vorticity displacement (�z) of the reversing
trajectories is negative while at higher r0z, �z changes sign and becomes positive.
We present this observation without having sought to delineate the initial separation
surface leading to �z < 0 because of the domain dependence and the dependence on
the manner of releasing the particle (the initial condition).

4.2.2. Open trajectories

Following the arguments given for in-plane trajectories, if the initial displacement
in the flow direction is fixed, one expects a critical displacement rc

0y(z) for every
z-plane which sets the reversing trajectories apart from the open ones; this initial
separation point lies on the separatrix between open and reversing trajectories. We
begin by looking at the vorticity displacement (�z) of the off-plane open trajectories.
All open trajectories with r0z > 0 are found to have a net positive �z, meaning they
are displaced away from the shear plane through the pair interaction.

The xy-projection of the off-plane open trajectories is now considered. For small
values of r0z, the open trajectories are visually very similar to the open trajectories
in the shearing plane for the same value of gradient displacement r0y . As the initial
separation is taken with larger r0z, the pair trajectory exhibits a decreasing gradient
displacement �y, as illustrated by figure 13 for the open trajectories starting at
r0z = 0, 0.032 and 1.9.

4.2.3. Spiralling trajectories

The most visually prominent effect of inertia upon the pair-trajectory space is the
introduction of spiralling trajectories along the vorticity axis. The term spiralling refers
to a trajectory which increases in distance from the z-axis as the pair z separation
decreases. An xy-projection of such a trajectory cuts the x-axis successively, for
example, at x1 and x2 with |x2| > |x1|, and a similar statement may be made for the
crossing of the y-axis in this projection. A pair originating from a point at separation
in z of a few radii, and only slightly displaced from the z-axis, will spiral towards
the shear plane. Following their closest approach, the pair move away with the shear
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Figure 13. Open trajectories starting from (−9.7, 0.3, r0z) for r0z = 0, 0.3 and 1.9 at Re = 0.1
(a) xy-projection (b) xz-projection. For reference, the dashed–dotted line is at the original
vorticity separation, and the deviation of the curves from this line illustrates the vorticity
displacement �z. For the trajectory with r0z = 0, the points are equally spaced in time, and hence
look denser upon approach than separation because of the positive gradient displacement.

flow to infinite separation. Early in this trajectory, the motion has two components,
along the z-axis towards the plane of shear and spiralling in the local x–y plane.
Suppose the initial displacement is r0 = (0, r0y, r0z). For a trajectory with smaller r0y ,
the z-directed motion is more pronounced than the spiralling and thus there is a
limiting trajectory that coincides with the z-axis and does not spiral. This motion
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Figure 14. Off-plane spiralling trajectories starting from r0 = (−0.0032, 0.016, 2.9) for (a)
Re = 0.1, xy-projection, (b) Re = 0.1, xz-projection, (c) Re = 0.2, xz-projection, (d) Re = 0.5,
xz-projection. The arrows indicate the strain (γ̇ t) values where the trajectory crosses y = 0 for
x < 0 as illustrated in (a). Strain (or t) is zero at r0.

presumably would be unstable to any displacement outward (in x or y), which would
yield a spiral motion.

Figure 14 shows trajectories with r0 = (−0.0032, 0.016, 2.9). First consider fig-
ure 14(a, b) for Re = 0.1 in xy- and xz-projections, respectively. The two particles
spiral toward one another along the vorticity axis. Following a close encounter, the
particles move off toward infinite separation in opposite directions of the shear flow.
Examination of the xz-projection of the trajectory shows that initially it has only neg-
ative z-velocity but as the pair becomes close, the z-directed relative motion changes
sign during each circuit, while still bringing the pair closer over each full circuit. This
motion is quite similar to that of a fluid element around a freely rotating sphere seen
in §3. Hence the streamline configuration around a single sphere (shown in figure 5)
should aid in understanding the pair behaviour at Re larger than computed here.

We now consider the xz-projections of spiralling trajectories at Re = 0.1, 0.2 and
0.5, shown respectively in figure 14(b–c). The strain undergone by the flow (γ̇ t) at
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points along the trajectories is labelled with t = 0 at the initial separation, r0. Note
that the initial separation is the same for each of these conditions. For the trajectory
at largest Re = 0.5, the advance along the z-axis is more rapid, and the particles
approach one another and complete the close interaction at the smallest value of the
strain. The observation of a larger strain to complete the close interaction at smaller
Re is consistent with the Re = 0 prediction that the interaction would be a closed
trajectory, and would take place at a bounded separation for infinite strain.

Before closing this section, we note that the finite Re pair trajectories are functions
of initial conditions (history-dependent). Our approach has been to allow the spheres
to reach a steady rotation rate, i.e. the hydrodynamic torque relaxes to zero, at fixed
r0 prior to allowing translation. The equilibration time scales as τeq = H 2/ν, the time
required for diffusion of momentum from the walls to the centre, where ν is the
kinematic viscosity of the fluid. One could also set the body in motion with the
velocity of the fluid which would be at its centre point under the assumption this
reduces the hydrodynamic force, but this is a poor condition for very close pairs such
as those seen in the in-plane spiralling case. It was judged prudent to use the single
initial condition of torque relaxation in all cases. This is admittedly not a completely
accurate representation of the free trajectories, but we have found that the far-field
open and reversing trajectories obtained with and without torque equilibration are
indistinguishable.

5. Conclusions
The hydrodynamic interactions of a pair of spherical particles suspended in simple-

shear flow at finite Re is a basic issue important to development of the understanding
of inertia in suspension mechanics. While it is not feasible to map the entire trajectory
space numerically even for a single Re, by focusing on Re = O(0.1), we have delineated
the structure of the finite Re pair trajectory space for neutrally buoyant spheres of
equal size. The similarity of the various forms of trajectory seen in the pair space
to the streamlines around a single freely rotating sphere provides some guidance in
considering the pair interaction at larger Re.

Using the LBM with a wall-bounded geometry with periodicity in the flow and
vorticity direction, we have demonstrated the characteristics of finite inertial pair
trajectories in simple shear flow. The role of the boundary is found to be minimal
for wall separations of ten particle diameters at Re = O(0.1), while the periodicity
in the flow direction has some quantitative effects. The periodicity in the vorticity
direction has a negligible effect upon the in-plane trajectories presented but may alter
the quantitative results for off-plane trajectories.

For the range of Reynolds numbers O(10−2) <Re < O(1) studied, the simulated
trajectories were qualitatively much different from those at Re = 0. The closed pair
trajectories (Batchelor & Green 1972) present at Re = 0 vanish at finite inertia, a result
which in hindsight can largely be deduced from the loss of the fore–aft symmetry of
Stokes flow. The inertia gives rise to new classes of pair relative trajectories which are
similar to the reversing (Mikulencak & Morris 2004) and spiralling (Subramanian &
Koch 2006a, b) streamlines around a freely rotating sphere. The open trajectories
occupy most of the pair-trajectory space and are fore-aft asymmetric at finite Re,
giving always a positive offset in the gradient direction for neutrally buoyant particles.
The reversing and spiralling trajectories, which replace the closed trajectories predicted
at Re = 0, occupy a smaller volume of pair-trajectory space. In fact, at Re � 0.1, the
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in-plane spiralling trajectories have not been observed in our calculations, although
it is not expected that they completely vanish.

This study of particle interactions due to inertial hydrodynamics may have relevance
to examination of structures seen in bulk suspension flows. In earlier work, the flow
around a single sphere at finite Re, and in particular the reversing streamlines, was
invoked to suggest pair-trajectory reversal as a possible basis for the formation of
trains of particles in pressure-driven flow in a pipe (Matas et al. 2004). The reversing
pair trajectories presented here provide a better guide to consideration of this issue.
In more general terms, our study serves as a step towards developing theoretical
understanding of the role of inertia at the particle scale in particle-laden flows.

This work was supported by NSF Cooperative Agreement No. HRD-0206162,
to the CREST Center for Mesoscopic Modeling and Simulation at CCNY. We are
grateful to Professor A. J. C. Ladd of the University of Florida for providing the
initial lattice-Boltzmann code.
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